2012年6月7日 星期四

外星人

外星人是人類對地球以外的智慧生命的統稱。古今中外一直有關於外星人的遐想,或是將古印度人、古馬雅人、古埃及人建造的發達古文明歸咎於受到外星生物科技的影響。在各國史書中也有不少疑似外星人的奇異記載,但現今人類還無法實際探查是否有外星生命,甚至是外星人的存在,僅有美國 FBI於 2011 年4月所公開的解密手稿當中,關於羅斯威爾飛碟墜毀事件的紀錄,能當作目前可能外星人存在的證據。又一些學者專家認為,幽浮是已人為地被包裝成新時代的迷信對象,很多人在不同的程度上和外星人有過接觸,其實都是心理作用。據美國哈佛大學首席天體物理學家霍華史密斯(Howard Smith)博士的說法,人類很可能是整個宇宙中唯一的「人」。他也認為,人類發現「外星人」的機率很小。即使發現有外星人的存在,也幾乎不大可能和他它們發生任何接觸。中華人民共和國北京天文館館長朱進說:「外星人從沒有在地球現身過。在過去50年的搜尋中,天文學家並沒有發現任何外星人的線索」。


英國物理學家史蒂芬·霍金(Stephen Hawking)則在發現頻道(Discovery Channel)的一部記錄片中表示肯定外星生命的存在。 他認為,宇宙包含著1000億個星系,每一個星系又擁有數億顆恆星。在這麼廣闊的區域裡,地球不可能是生命進化的唯一場所。
霍金同時認為,外星生命可能存在於宇宙的很多地點,人類最好是不要與他們接觸,否則風險很大。


不過,中國科學院紫金山天文臺研究員、行星天文學家王思潮教授22日在廣州出席「小谷圍科學講壇」時表示,他相信外星人的存在,而且外星人研發的飛行器有星際旅行的能力。同時,他也不贊同英國科學家霍金的與外星人相遇對人類意味著災難一説。他表示,霍金的觀點是從大航海時代第一次接觸得出的結論,但現在人類已認識並採取實際行動保護生物多樣性,而且外星智慧生命的科技可能要比人類發達得多,他們可用科技解決能源,例如用核聚變能源,可到無生命的星球採礦或自己創造新材料。


資料來源:http://zh.wikipedia.org/wiki/%E5%A4%96%E6%98%9F%E4%BA%BA

黑洞

黑洞(Black hole)是根據現代的廣義相對論所預言的,在宇宙空間中存在的一種質量相當大的天體。黑洞是由質量足夠大的恆星在核融合反應的燃料耗盡而死亡後,發生引力塌縮而形成。黑洞的質量是如此之大,它產生的引力場是如此之強,以至於任何物質和輻射都無法逃逸,就連光也逃逸不出來。由於類似熱力學上完全不反射光線的黑體,故名為黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點。


質量和尺寸
當大質量天體演化末期,其塌縮核心的質量超過太陽質量的3.2倍時,由於沒有能夠對抗引力的斥力,核心坍塌將無限進行下去,從而形成黑洞。(核心小於1.4個太陽質量的,會變成白矮星;介於兩者之間的,形成中子星)。天文學的觀測表明,在絕大部分星系的中心,包括銀河系,都存在超大質量黑洞,它們的質量從數百萬個直到數百億個太陽。


否認黑洞存在的一些觀點
1.量子力學方面的反駁:黑洞中心的奇異點具有量子不穩定性,所以整個黑洞不可能穩定存在。
2.目前發現的黑洞是一些暗能量星:美國加利福尼亞勞倫斯·利弗莫爾國家實驗室的天體物理學家喬治·錢普拉因等認為,目前發現的黑洞是一些暗能量星,真正意義上的黑洞是不存在的。
3.某些使用與廣義相對論等價假設的延展理論可以推導出沒有奇點的緻密天體,同樣可以完善解釋所觀測到的強引力現象,而這些理論在大部分狀況下效應與廣義相對論等價,例如同樣具有重力透鏡效應。黑洞的存在於宇宙學上並非絕對必要,奇點的發生目前往往出自於物理理論上的物理數學工具不完備。
4.量子理論裡面,光子與希格斯玻色子(Higgs boson)並沒有直接交互作用,如果黑洞存在,對於光子的重力機制描述理論並不完善。黑洞如何吸引理論上不具質量的光子,確實是個疑問。而如果光子具有極微小的質量,光子受緻密星體影響的理論並不成問題,但廣義相對論卻需要進行修正。(引力是時空彎曲的結果,光子也可認為具有等效質量m=hv/c²。)
5.觀測技術上,沒有任何有效的辦法來區分「黑洞」與「重力真空星」(Gravastar)之間的差異。「重力真空星」是採用半古典力學方法做廣義相對論的量子力學修正推導出來的星體,天體物理學界有時將之暱稱為黑星(Black Star)。「重力真空星」具有量子力學的修正後的優點,而沒有「古典黑洞」的理論缺點。觀測數據使用「黑洞模型」與「重力真空星模型」進行分析時,沒有任何辦法分辨出是哪一種星體,而「重力真空星模型」當中則沒有「視界」這種虛構的現象,「暗能量星模型」亦將「視界」消滅,並不存在「視界」這種物理現象。「重力真空星」、「暗能量星」及「模糊球理論」這三種模型均將「古典黑洞理論」當中的弊端「視界」與「奇點」全部消滅,除了「重力真空星模型」旋轉時會有不穩定的問題以外,三種理論模型本身並無重大弊端,是很有效的黑洞替代方案。


資料來源:http://zh.wikipedia.org/wiki/%E9%BB%91%E6%B4%9E

2012年5月25日 星期五

地球


地球是太陽系從內到外的第三顆行星,也是太陽系中直徑、質量和密度最大的類地行星。住在地球上的人類又常稱呼地球為世界。
地球是上百萬種生物的家園,包括人類。地球是目前人類所知宇宙中唯一存在生命的天體。地球誕生於45.4億年前,而生命誕生於地球誕生後的10億年內。從那以後,地球的生物圈改變了大氣層和其他環境,使得需要氧氣的生物得以誕生,也使得臭氧層形成。臭氧層與地球的磁場一起阻擋了來自宇宙的有害射線,保護了陸地上的生物。地球的物理特性,和它的地質歷史和軌道,使得地球上的生命能周期性地持續。地球預計將在15億年內繼續擁有生命,直到太陽不斷增加的亮度滅絕地球上的生物圈。
地球的表面被分成幾個堅硬的部分,或者叫板塊,它們以地質年代為周期在地球表面移動。地球表面大約71%是海洋,剩下的部分被分成洲和島嶼。液態水是所有已知的生命所必須的,但並不在所有其他星球表面存在。地球的內部仍然非常活躍,有一層很厚的地函,一個液態外核和一個固態鐵的核心。
地球會與外太空的其他天體相互作用,包括太陽和月球。當前,地球繞太陽公轉一周所需的時間是自轉的366.26倍,這段時間被叫做一恆星年,等於365.26太陽日。地球的地軸傾斜23.4°(與軌道平面的垂線傾斜23.4°),從而在星球表面產生了周期為1恆星年的季節變化。地球唯一的天然衛星,誕生於45.3億年前的月球,造成了地球上的潮汐現象,穩定了地軸的傾角,並且減慢了地球的自轉。大約38到41億年前,後期重轟炸期的小行星撞擊極大地改變了表面環境。


地球概論特徵
地球由核心到地表的構成是有一定規律的。如同其他的類地行星,地球內部從外向內分別為矽質地殼、高度粘滯狀地函、以及一個外層為非粘滯液態內部為固態的地核。地核液體部份導電質的對流使得地球產生了微弱的地磁場。
地球內部溫度高達5270開爾文(4996.85攝氏度)。行星內部的熱量來自於其形成之初的「吸積」(參見重力結合能)。這之後的熱量來自於類似鈾釷和鉀這類放射性元素的衰變。從地球內部到達地表的熱量只有地表接收太陽能量的1/20000。
地球內部的金屬質不斷的通過火山和大洋裂縫湧出地表(參見海底膨脹條目)。組成地殼大部分的岩石年齡都不超過1億(1×108)年;目前已知的最古老的地殼年齡大約有44億(4.4×109)年歷史。


地球歷史
科學家已經能夠重建地球過去有關的資料。太陽系的物質起源於45.672億±60萬年前,而大約在45.4億年前(誤差約1%),地球和太陽系內的其他行星開始在太陽星雲-太陽形成後殘留下來的氣體與塵埃形成的圓盤狀-內形成。通過吸積的過程,地球經過1至2千萬年的時間,大致上已經完全成形。從最初熔融的狀態,地球的外層先冷卻凝固成固體的地殼,水也開始在大氣層中累積。月亮形成的較晚,大約是45.3億年前,一顆火星大小,質量約為地球十分之一的天體(通常稱為忒伊亞)與地球發生致命性的碰撞。這個天體的部分質量與地球結合,還有一部分飛濺入太空中,並且有足夠的物質進入軌道形成了月球。
釋放出的氣體和火山的活動產生原始的大氣層,小行星、較大的原行星、彗星和海王星外天體等攜帶來的水,使地球的水份增加,冷凝的水產生海洋。新形成的太陽光度只有目前太陽的70%,但是有證據顯示早期的海洋依然是液態的,這稱為微弱年輕太陽謬論矛盾。溫室效應和較高太陽活動的組合,提高了地球表面的溫度,阻止了海洋的凝結。
有兩個主要的理論提出大陸的成長:穩定的成長到現代和在早期的歷史中快速的成長。目前的研究顯示第二種學說比較可能,早期的地殼是快速成長的,隨後跟著長期穩定的大陸地區。在時間尺度上的最後數億年間,表面不斷的重塑自己,大陸持續的形成和分裂。在表面遷徙的大陸,偶爾會結成成超大陸。大約在7億5千萬年前,已知最早的一個超大陸羅迪尼亞開始分裂,稍後又在6億至5億4千萬年時合併成潘諾西亞大陸,最後是1億8千萬年前開始分裂的盤古大陸 。



資料來源:http://zh.wikipedia.org/wiki/%E5%9C%B0%E7%90%83

太陽


太陽是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000公里,相當於地球直徑的109倍;質量大約是2×1030千克(地球的330,000倍),約佔太陽系總質量的99.86%。 從化學組成來看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2%。

太陽是太陽系的母星,也是最主要和最重要的成員。它有足夠的質量讓內部的壓力與密度足以抑制和承受核融合產生的巨大能量,並以輻射的型式,例如可見光,讓能量穩定的進入太空。
太陽在分類上是一顆中等大小的黃矮星,不過這樣的名稱很容易讓人誤會,其實在我們的星系中,太陽是相當大與明亮的。恆星是依據赫羅圖的表面溫度與亮度對應關係來分類的。通常,溫度高的恆星也會比較明亮,而遵循此一規律的恆星都會位在所謂的主序帶上,太陽就在這個帶子的中央。但是,比太陽大且亮的星並不多,而比較暗淡和低溫的恆星則很多。

太陽在恆星演化的階段正處於「壯年期」,尚未用盡在核心進行核融合的氫。太陽的亮度仍會與日俱增,早期的亮度只是現在的75%。
計算太陽內部氫與氦的比例,認為太陽已經完成生命週期的一半,在大約50億年後,太陽將離開主序帶,並變得更大與更加明亮,但表面溫度卻降低的紅巨星,屆時它的亮度將是目前的數千倍。
太陽是在宇宙演化後期才誕生的第一星族恆星,它比第二星族的恆星擁有更多比氫和氦重的金屬(這是天文學的說法:原子序數大於氦的都是金屬。)。比氫和氦重的元素是在恆星的核心形成的,必須經由超新星爆炸才能釋入宇宙的空間內。換言之,第一代恆星死亡之後宇宙中才有這些重元素。最老的恆星只有少量的金屬,後來誕生的才有較多的金屬。高金屬含量被認為是太陽能發展出行星系統的關鍵,因為行星是由累積的金屬物質形成的。


資料來源:http://zh.wikipedia.org/wiki/%E5%A4%AA%E9%99%BD%E7%B3%BB

太陽系


太陽系是以太陽為中心,和所有受到太陽的重力約束天體的集合體:8顆行星、至少165顆已知的衛星、5顆已經辨認出來的矮行星和數以億計的太陽系小天體。這些小天體包括小行星、古柏帶的天體、彗星和星際塵埃。


概述和結構
太陽系的主角是位居中心的太陽,它是一顆光譜分類為G2V的主序星,擁有太陽系內已知質量的99.86%,並以引力主宰著太陽系。木星和土星,是太陽系內最大的兩顆行星,又佔了剩餘質量的90%以上,目前仍屬於假說的歐特雲,還不知道會佔有多少百分比的質量。
太陽系內主要天體的軌道,都在地球繞太陽公轉的軌道平面(黃道)的附近。行星都非常靠近黃道,而彗星和古柏帶天體,通常都有比較明顯的傾斜角度。

由北方向下鳥瞰太陽系,所有的行星和絕大部分的其他天體,都以逆時針(右旋)方向繞著太陽公轉。有些例外的,像是哈雷彗星。
環繞著太陽運動的天體都遵守克卜勒行星運動定律,軌道都以太陽為橢圓的一個焦點,並且越靠近太陽時的速度越快。行星的軌道接近圓型,但許多彗星、小行星和古柏帶天體的軌道則是高度橢圓的。
在這麼遼闊的空間中,有許多方法可以表示出太陽系中每個軌道的距離。在實際上,距離太陽越遠的行星或環帶,與前一個的距離就會更遠,而只有少數的例外。例如,金星在水星之外約0.33天文單位的距離上,而土星與木星的距離是4.3天文單位,海王星又在天王星之外10.5天文單位。曾有些關係式企圖解釋這些軌道距離變化間的交互作用(參見提丟斯-波得定則),但這樣的理論從未獲得證實。


形成和演化
太陽系的形成據信應該是依據星雲假說,最早是在1755年由康德和1796年由拉普拉斯各自獨立提出的。這個理論認為太陽系是在46億年前從一個巨大的分子雲的塌縮中形成的。這個星雲原本有數光年的大小,並且同時誕生了數顆恆星。研究古老的隕石追溯到的元素顯示,只有超新星爆炸的心臟部分才能產生這些元素,所以包含太陽的星團必然在超新星殘骸的附近。可能是來自超新星爆炸的震波使鄰近太陽附近的星雲密度增高,使得重力得以克服內部氣體的膨脹壓力造成塌縮,因而觸發了太陽的誕生。
被認定為原太陽星雲的地區就是日後將形成太陽系的地區,直徑估計在7,000至20,000天文單位,而質量僅比太陽多一點。當星雲開始塌縮時,角動量守恆定律使它的轉速加快,內部原子相互碰撞的頻率增加。其中心區域集中了大部分的質量,溫度也比周圍的圓盤更熱。當重力、氣體壓力、磁場和自轉作用在收縮的星雲上時,它開始變得扁平成為旋轉的原行星盤,而直徑大約200天文單位,並且在中心有一個熱且稠密的原恆星。


資料來源:http://zh.wikipedia.org/wiki/%E5%A4%AA%E9%99%BD%E7%B3%BB

宇宙



宇宙是由空間、時間、物質和能量,所構成的統一體。是一切空間和時間的總合。一般理解的宇宙指我們所存在的一個時空連續系統,包括其間的所有物質、能量和事件。



大爆炸理論中宇宙的歷史
現代物理宇宙學一般認為宇宙起源於大爆炸,即約137.3億(±1%)年前由一個密度極大,溫度極高的狀態膨脹而來。對於大爆炸以前的宇宙,目前只有一些猜測性的理論。
而最新的研究則認為宇宙的年齡為156億年,但是這個說法還未得到公認。


宇宙的形狀
首先,宇宙到底是不是「平坦空間」,即大範圍內遵守歐氏幾何的空間還未清楚。目前,大部分宇宙學家認為已知宇宙除了大質量天體造成的局部時空褶皺,是基本平坦的-就像湖面是基本平坦但局部有水波一樣。最近威爾金森微波各向異性探測器觀測宇宙微波背景輻射的結果也肯定了這一認識。
其次,尚未清楚宇宙是否是多重連接。根據大爆炸理論,宇宙是沒有空間邊界的,然而其空間大小可能是有限的。我們可以通過二維的概念類推:一個球面沒有邊界,但是它的面積是有限的(4πR2)。它是一個在三維空間有固定曲率的二維表面。數學家黎曼發現了四維空間中一個與此類似的三維球形「表面」,其總體積為有限(2π2R3)但三個方向都朝第四個維度彎曲。他還發現了一個「橢圓空間」和「圓柱形空間」,後者的圓柱形兩頭互相連接但沒有彎曲圓柱本身-這一現象在普通的三維空間是不可想像的。類似的數學例子還有很多。
如果宇宙真是有限但無邊界的話,人沿着宇宙中一條任意方向的「直線」走下去,最終會回到出發點,其路線長度可認為是宇宙的「直徑」(這個直徑是現在人類對宇宙的認識所無法想像的,因為它一定要比我們所見的宇宙部分大得多。)。


宇宙的命運
根據天文觀測和宇宙學理論,可以對可觀測宇宙未來的演化作出預言。均勻各向同性的宇宙的膨脹滿足弗里德曼方程。
多年來,人們認為,根據這一方程,物質的引力會導致宇宙的膨脹減速。宇宙的最終命運決定於物質的多少:如果物質密度超過臨界密度,宇宙的膨脹最後會停止,並逆轉為收縮,最終形成與大爆炸相對的一個「大坍縮」(big crunch);如果物質密度等於或低於臨界密度,則宇宙會一直膨脹下去。另外,宇宙的幾何形狀也與密度有關:如果密度大於臨界密度,宇宙的幾何應該是封閉的;如果密度等於臨界密度,宇宙的幾何是平直的;如果宇宙的密度小於臨界密度,宇宙的幾何是開放的。並且,宇宙的膨脹總是減速的。
然而,根據近年來對超新星和宇宙微波背景輻射等天文觀測,雖然物質的密度小於臨界密度,宇宙的幾何卻是平直的,也即宇宙總密度應該等於臨界密度。並且,膨脹正在加速。這些現象說明宇宙中存在着暗能量。不同於普通所說的「物質」,暗能量產生的重力不是引力而是斥力。在存在暗能量的情況下,宇宙的命運取決於暗能量的密度和性質,宇宙的最終命運可能是無限膨脹,漸緩膨脹趨於穩定,或者是與大爆炸相對的一個「大坍縮」,或者也可能膨脹不斷加速,成為「大撕裂」。目前,由於對暗能量的性質缺乏了解,還難以對宇宙的命運做出肯定的預言。


資料來源:http://zh.wikipedia.org/zh-hk/%E5%AE%87%E5%AE%99